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We have examined a solution to the FRW model of the Einstein and de Sitter Universe,
often termed the standard model of cosmology, using wide values for the normalized
cosmic constant (�∧) and spacetime curvature (�k) with proposed values of normalized
matter density. These solutions were evaluated using a combination of the third type of
elliptical equations and were found to display critical points for redshift z, between 1
and 3, when �∧ is positive. These critical points occur at values for normalized cosmic
constant higher than those currently thought important, though we find this solution
interesting because the �∧ term may increase in dominance as the Universe evolves
bringing this discontinuity into importance. We also find positive �∧tends towards
attractive at values of z which are commonly observed for distant galaxies.
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1. INTRODUCTION

The standard view of Universe expansion, the Friedmann–Robertson–Walker
(FRW) model, seems to mimic our current situation well given the approximation
of an isotropic and homogeneous sprinkling of matter across large dimensions and
inclusion of vacuum energy. The standard model has several variants and most
include significant positive values of ∧ the vacuum energy constant; this energy
of deep space seems to encourage Universe expansion and act as anti-gravity.
Some current detailed models predict a greatly increasing importance of this
energy with continued Universe expansion, with suggestions we are entering the
age of dominance by vacuum energy (Behar and Carmeli, 2000). Another recent,
interesting model details such an energy coupled to absolute time, allowing an
initial vacuum energy driven inflationary phase immediately after release from
singularity, followed by a more leisurely relaxation of this energy (Bisabr, 2004).
Perhaps the current vacuum energy is a residual of the first moments of the
Universe.
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Recent measurements of supernovae type Ia (SNe Ia) distances D(L) and
associated redshifts z (or receding velocities), have uncovered the existence of
a significant current value for the cosmic constant (Tonry et al., 2003, Reiss
et al., 2004, 1998). The measurements of SNe Ia distances and receding velocities
are subject to a myriad of possible experimental errors demanding careful data
collection and detailed analyses, for evidence of this positive repulsive energy is
obtained from quite distant SNe Ia explosions. Still these SNe Ia studies present
data with the smallest experimental errors to date and are the most useful for
model testing. These authors also take the positive ∧ to mean the Universe is
expanding more rapidly now than in the past and the local Hubble constant, H0 is
gradually increasing with time. Without this energy from deep space we should
expect H0 to slowly decrease over time due to the self attraction of matter and
energy. Knowledge of H0 is also important because the upper bound of the age of
the Universe is fixed by the local value of H0 in many models. Surprisingly, H0 is
not known to better than ±10% (Freedman et al., 2001), indeed the Universe age is
not known to better than ±10% if the age of low metal stars is a gauge (VandenBerg
et al., 2002). One reason for this is the dependence of H0 upon matter density
which itself is highly dependent upon the distances between stars and galaxies and
dust density. Another reason for inaccuracy being the relative time span of our
data, both SNe Ia and star elemental composition, are instantaneous respective to
processes of the Universe.

We have examined the standard model of the expanding Universe using a so-
lution of the elliptical form and found that at realistic matter densities this solution
exhibits discontinuities at values of the normalized cosmic constant slightly larger
than current estimates. When we examine this solution for the smaller normalized
matter densities of the future (and values suggested a few decades ago), this dis-
continuity presents problems for vacuum energy dominated models. Use of the
cosmic constant in the standard model also clouds predictions of galactic redshifts
at epochs only slightly older than those collected in SNe Ia studies. Though it
would be useful to be able to calculate distant galactic ages from redshift alone,
now at seven or higher (Kneib et al., 2004), such are unreliable if the positive
vacuum energy is significant. We do not find discontinuities for negative vacuum
energies (attractive) at realistic values of normalized matter densities.

2. THE FRIEDMANN MODEL

We use the conventions of Carroll et al. (1992) with a Friedmann equation
modeling our expanding Universe

H 2 =
(

Ṙ

R

)2

= 8πG

3
ρm + ∧

3
− k

R2
. (1)
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Here the ρm is the matter density and the first term attractive, while the second
term may either be repulsive or attractive, it is usually meant as repulsive. The
constant of integration k, may take values of −1, 0 or +1, for a Universe with
“open, flat or closed” geometries, respectively. The H represents the Hubbell
parameter with R the expansion factor for the evolving Universe. Einstein first
proposed his gravitational equation without a cosmic constant and preferred a very
slightly closed Universe with matter dominating (Einstein, 1916), i.e., k > 0. He
later introduced the cosmic constant into his gravitational equation after Friedmann
and Lemaître pointed out the Universe, populated with considerable matter, should
either be expanding or suffer contraction, but astronomers had not yet firmly
discovered other “Universes” or galaxies outside the Milky Way. This constant
allowed the possibility of a static Milky Way (and Universe), which was the
limit of knowledge early in the 20th century. Hubble, Wirtz, Slipher and others
later pointed out that most other galaxies were following trajectories away from
the Milky Way with the implication that the Universe has no possible stationary
reference point, in confirmation of Einstein’s proposals. It seems that Einstein
later regretted introduction of this cosmic constant, nonetheless, this concept has
recently regained popularity in cosmology to explain certain observations.

3. THEORY

It is common to introduce normalized parameters for matter, vacuum energy
and geometry

�m = 8πG

3H 2
0

ρm0 ,�∧ = ∧
3H 2

0

,�k = − k

R2
0H

2
0

. (2)

We use the typical conditions of normalization across these three parameters
following the convention of Carroll et al. (1992)

1 = �m + �∧ + �k (3)

where �m represents normalized matter density, �∧ normalized vacuum energy
density and �k normalized spacetime curvature; the radiation density term, �r

being small at present, is included with matter density and we will briefly review
the equations of interest. If we allow ρm0 to represent the present matter density
which is M

(4π/3R3
0 )

in (1) to give us the FRW model at the present time we have

(
dR

Rdt

)2

= H 2
0 �m

R3
0

R3
+ H 2

0 �∧ + H 2
0 �k

R2
0

R2
. (4)
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Now, we substitute for R
R0

with a(t)

(
ȧ(t)

a(t)

)2

= H 2
0

�m

a(t)3
+ H 2

0 �∧ + H 2
0

�k

a(t)2
(5)

and then multiplying through by a(t)2

H 2
0

gives us one equation of our current state

1

H 2
0

(
da(t)

dt

)2

= �m

a(t)
+ a(t)2�∧ + �k. (6)

This allows us to introduce the dimensionless parameter τ for time as τ = H0t

(
da(τ )

dτ

)2

= 1

a(τ )
(�m + �∧a(τ )3 + �ka(τ )) (7)

da(τ )

dτ
= 1√

a(τ )

√
�m + �∧a(τ )3 + �ka(τ ). (8)

Then inverting and integrating both sides from the past τ1 to the present τ0 we
have

∫ τ0

τ1

1dτ =
∫ 1

a1

√
a(τ )√

�m + �∧a(τ )3 + �ka(τ )
da(τ ) (9)

and substituting 1/(1 + z) for a, we have the integral from the past z1 to the present
of 0 we arrive at

τ0 − τ1 = −
∫ 0

z1

1

(1 + z)
√

�m(1 + z)3 + �∧ + �k(1 + z)2
dz. (10)

This is similar to an equation modeling redshifts as presented in Peebles (1993).
We shall use the variable y for 1 + z and bring out 1√

�m
from within the integral

of (10), so the integral becomes

τ0 − τ1 = − 1√
�m

∫ 1

1+z1

1

y

√
y3 + �∧

�m
+ �ky2

�m

dy. (11)

We shall now change the variable once again, allowing y = u − �k

3 �mwhich also
changes the integration limits of the following equation

τ0 − τ1 = 1√
�m

∫ 1+z1+ �k
3�m

1+ �k
3�m

1

(u − �k

3�m
)
√

u3 − �2
k

3�2
m

+ 2�3
k

27�3
m

+ �∧
�m

du (12)
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and by using a similar substitution we can simplify the denominator in terms of u

with the same limits of integration as in (12)

τ0 − τ1 = 1√
�m

∫
1

(u − �k

3�m
)
√

(u − u1)(u − u2)(u − u3)
du. (13)

The right side of (13) is solved as an elliptical function of the third type, where

x =
√

u − u1

u2 − u1
, ν = u1 − u2(

u1 − �k

3�m

) , k =
√

u1 − u2

u1 − u3
(14)

τ0 − τ1 = − 2√
u3 − u1(u3 − �k

3�m
)

× �(x, ν, k) (15)

and the function can be evaluated using the limits of (12).
We may also proceed from equation (10) by inverting the limits of integration,
changing sign and substituting for τ0 − τ1 we get the following useful equation
with details presented in the appendix

H0DL = c(1 + z)√|�k|
sinn

{√|�k|√
�m

} ∫ z1

0

1√
(1 + z)3 + �∧

�m
+ �k

�m
(1 + z)2

dz (16)

and sinn is sin for �k < 0 and sinh for �k > 0. Note that within the denominator of
the integral �∧ appears in only linear combination with z as opposed to appearance
of this term in the more conventional use (Carroll et al. 1992, Tonry et al., 2003)
in this equation

H0DL = c(1 + z)√|�k|
sinn

{|�k|1/2} ∫ z1

0

1√
(1 + z)2(1 + �mz) − z(2 + z)�∧

dz.

(17)
Again, the nature of sinn depends upon spacetime curvature as above and (16) and
(17) are different forms of the same solution.

4. RESULTS

There are some problems of inconsistency that arise with this solution of the
standard model and we observe these near parameter values presently considered
important. We find the root portion of the denominator of (10) causes these
inconsistencies across a range of normalized matter densities as displayed in
Fig. 1 for �m from 0.30 to 0.05. These graphs present the discontinuity, with
respect to equation (10), increasing in intensity with corresponding value of z as
�m approaches 0. For instance, at �m of 0.30, currently of interest (Feldman et al.,
2003), �∧ appears inconsistent from 1.713 to 1.714 with the associated values
of �k of −1.013 and −1.014. This inconsistency widens considerably at �m of
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Fig. 1. {�m(1 + z)3 + �∧ + �k(1 + z)2} versus redshift z for various normalized matter densities
between 0.30 and 0.05.

0.05, perhaps of interest (Fall, 1975), where at z ≈ 2.65 the inconsistency in �∧
lies from 1.224 to 1.250; though the breadth of the inconsistency increases with
increasing z and decreasing �∧ the exact values of these inconsistencies decrease
along with disappearing matter density.

We have traced these inconsistencies at �m of 0.05 and 0.30, with various
values for �∧ and present results in Figs. 2 and 3 as plots of H0DL with respect
to log z. Both figures demonstrate for large values of the cosmic constant, 1.2 to
1.7, and with reasonable values of spacetime curvature �k drastic deviations from
useful solutions of H0DL. At the lower matter density of 0.05 (Fig. 2) this function
does not straightforwardly correlate H0DL with z, for values of �∧ above 1.2 and
for z above about 2. Here, the critical value for �∧ is a rather low 1.224. With
increasing �∧ from 0.70 to 0.95, we find the larger values of z correlate with the
smaller values of �∧ as should be observed in Universes with increasing matter
densities and decreasing anti-matter densities.

As plotted in Fig. 3 (�m= 0.30), all curves are shifted to higher values of z,
as expected for a Universe more populated with matter than in Fig. 2. The model
appears well behaved with larger values of H0DL correlating with larger values
of redshift up to perhaps �∧ of 1.2; solutions of H0DL at values of �∧ greater
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Fig. 2. Plots of H0DL as functions of log z with various values of �∧ with �m of 0.05 and
c normalized to 1.

Fig. 3. Plots of H0DL as functions of log z with various values of �∧ with �m of 0.30 and
c normalized to 1.
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Fig. 4. Log H0DL as a function of log z for various values of �∧ from +1.0 to −2.0 with �m of
0.05 and c normalized to 1. Note the “cross-over” of the trace of the solution with �∧ of +1.0.

than this and above z of 3.25 are questionable. Here, evaluations of H0DLwith
smaller values of �∧ appear indiscriminate but perhaps useful up to z of about
3, but no further. Beyond this redshift z is predicted to correlate with anti-gravity
density. Though these problems of inconsistency are for �∧ greater than 0.70 −
just outside the range currently thought to be important − as the Universe expands,
�∧ is supposed to dominate with �m eventually approaching 0 and the standard
model may fail for even moderate values of the redshift and �∧.

We have found that the FRW model does not obviously fail for negative values
of �∧ over a much wider range of �m and z. Figure 4 presents log H0DL versus
log z for �m of 0.05 with �∧ from +1 to −2. As expected for a Universe dominated
by attractive forces, H0DL decreases with decreasing �∧ and z decreases with
decreasing �∧ in smooth manners because the Hubble flow must increase with
increasing drag on expansion. Note that a positive cosmic constant (�∧= 1) does
follow this regular pattern above redshift of 6.59 in the Universe of low matter
density (0.05); greater than this distance the energy is predicted to become strongly
attractive. This ordering also exists at �m of 0.30 (Fig. 5) but is more pronounced;
up to redshifts of about 3.25 a �∧of +1.0 acts as anti-gravity, but at greater distance
than this �∧ acts attractively.
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Fig. 5. Log H0DL as a function of log z for various values of �∧ from +1.0 to −2.0 with �m of
0.30 and c normalized to 1. Note the “cross-over” of the trace of the solution with �∧ of +1.0.

5. DISCUSSION

The selection of a solution to the standard model of cosmology using an
elliptical form allows us to probe the ability of the model to estimate Hubble
expansion at great distances with dependence upon �∧. We have found, for values
of �∧ between 0 and −2 and values of �m currently thought realistic, the standard
model returns a consistent value for H0DL at z < 15. This is greater than redshifts
currently reported for the farthest galaxies, though this value may be surpassed
soon. When this model is solved for values of �∧ greater than 0 problems arise at
high values of z, where positive �∧ acts as attractive. In regions of �∧ greater than
+1 inconsistencies are observed of a general nature which limits the usefulness
of the standard model to regions of high matter density – densities consistent with
the Einstein–de Sitter model and currently thought important. If the Universe is
rushing towards a state of low matter density, increasing dependence upon �∧
with a trace of closed curvature (preferred by Einstein among others) the standard
model will probably fail. These regions of inconsistencies might be interpreted by
some, as evidence for an epoch of matter dominated Universe with a low Universe
expansion rate followed by the current epoch of vacuum energy domination and
faster expansion, though it seems to us that earlier epochs might be best not
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judged using the standard model. Very unfortunately, this also means calculations
of epochs of newly discovered galaxies exhibiting high redshifts will remain
unreliable until the FRW model can be better adapted for greater distances. The
standard model has limitations of usefulness with respect to accurate predictions of
large galactic distances and the age of the Universe. Inclusion of positive values for
the vacuum energy further restricts the range of useful predictions. Other models
or model variations incorporating modified application of the vacuum energy, but
not suffering regions of inconsistency, might be preferred. We hope to introduce
one such model soon.

APPENDIX

We derive (16), the elliptical form useful for astronomy from our (9). The
FRW metric, allowing a(t) = R

R0
is

dR0r

dt
= R0

R
(1 − kr2)1/2 (18)

R0
dr

dt
= 1

a(t)
(1 − kr2)1/2 (19)

with rearrangement becomes

R0dr

(1 − kr2)1/2
= dt

a(t)
. (20)

Remembering that τ= H0t we multiply through by H0 to get

H0R0
dr

(1 − kr2)1/2
= dτ

a(t)
(21)

and multiply through again using the relationship for the normalized �k = − k

R2
0H 2

0

H0R0
dr

(1 + �0R
2
0H

2
0 r2)1/2

= dτ

a(t)
. (22)

Substituting (9) for dτ we have

H0R0
dr

(1 + �0R
2
0H

2
0 r2)1/2

= 1

a(τ )

√
a(τ )da(τ )√

�m + �∧a(τ )3 + �ka(τ )
(23)

and integrating both sides and rearranging some constant parameters

H0R0

∫ r1

0

1√
1 + �0R

2
0H

2
0 r2

dr =
∫ 1

a1

1√
a(τ )

√
�m + �∧a(τ )3 + �ka(τ )

da(τ )

(24)
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then changing the variable on the left side using y = √
�kR0H0r and using the

redshift relationship
a = 1

(1+z) for substitution of the right hand side we get

1√
�k

∫ √
�kR0H0r1

0

1√
1 + y2

dy = −
∫ 0

z1

√
1 + z

(1 + z)2
√

�m + �∧
(1+z)3 + �k

1+z

dz. (25)

The integral on the left hand side is arc sin h(y) so the above becomes

1√
�k

arc sin h(
√

�kR0H0r1) =
∫ z1

0

1√
�m(1 + z)3 + �∧ + �k(1 + z)2

dz (26)

and substituting to arrive at the measurable DL using the relationships Dm = R0r1

and DL = (1 + z)Dm we arrive at

H0DL = 1 + z√|�k|
sin n

{√|�k|√
�m

} ∫ z1

0

1√
(1 + z)3 + �∧

�m
+ �k

�m
(1 + z)2

dz (27)

and with introduction of c for the speed of light becomes our equation (16).
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